Source code for secml.ml.kernel.c_kernel_rbf

"""
.. py:module:: CKernelRBF
   :synopsis: Radial basis function (RBF) kernel

.. moduleauthor:: Battista Biggio <battista.biggio@unica.it>
.. moduleauthor:: Marco Melis <marco.melis@unica.it>

"""
from sklearn import metrics

from secml.array import CArray
from secml.ml.kernel import CKernel


[docs]class CKernelRBF(CKernel): """Radial basis function (RBF) kernel. Given matrices X and Y, this is computed by:: K(x, y) = exp(-gamma ||x-y||^2) for each pair of rows in X and in Y. Attributes ---------- class_type : 'rbf' Parameters ---------- gamma : float Default is 1.0. Equals to `-0.5 * sigma^-2` in the standard formulation of rbf kernel, it is a free parameter to be used for balancing. batch_size : int or None, optional Size of the batch used for kernel computation. Default None. .. deprecated:: 0.10 Examples -------- >>> from secml.array import CArray >>> from secml.ml.kernel.c_kernel_rbf import CKernelRBF >>> print(CKernelRBF(gamma=0.001).k(CArray([[1,2],[3,4]]), CArray([[10,20],[30,40]]))) CArray([[0.666977 0.101774] [0.737123 0.131994]]) >>> print(CKernelRBF().k(CArray([[1,2],[3,4]]))) CArray([[1.000000e+00 3.354626e-04] [3.354626e-04 1.000000e+00]]) """ __class_type = 'rbf' def __init__(self, gamma=1.0, batch_size=None): super(CKernelRBF, self).__init__(batch_size=batch_size) # Using a float gamma to avoid dtype casting problems self.gamma = gamma @property def gamma(self): """Gamma parameter.""" return self._gamma @gamma.setter def gamma(self, gamma): """Sets gamma parameter. Parameters ---------- gamma : float Equals to `-0.5*sigma^-2` in the standard formulation of rbf kernel, is a free parameter to be used for balancing the computed metric. """ self._gamma = float(gamma) def _k(self, x, y): """Compute the rbf (gaussian) kernel between x and y. Parameters ---------- x : CArray or array_like First array of shape (n_x, n_features). y : CArray or array_like Second array of shape (n_y, n_features). Returns ------- kernel : CArray Kernel between x and y, shape (n_x, n_y). See Also -------- :meth:`CKernel.k` : Main computation interface for kernels. """ return CArray(metrics.pairwise.rbf_kernel( CArray(x).get_data(), CArray(y).get_data(), self.gamma)) def _gradient(self, u, v): """Calculate RBF kernel gradient wrt vector 'v'. The gradient of RBF kernel is given by:: dK(u,v)/dv = 2 * gamma * k(u,v) * (u - v) Parameters ---------- u : CArray or array_like First array of shape (n_x, n_features). v : CArray or array_like Second array of shape (n_features, ) or (1, n_features). Returns ------- kernel_gradient : CArray Kernel gradient of u with respect to vector v, shape (1, n_features). See Also -------- :meth:`CKernel.gradient` : Gradient computation interface for kernels. """ if v.issparse is True: # Broadcasting not supported for sparse arrays v_broadcast = v.repmat(u.shape[0], 1) else: # Broadcasting is supported by design for dense arrays v_broadcast = v # Format of output array should be the same as v u = u.tosparse() if v.issparse else u.todense() diff = (u - v_broadcast) k_grad = self._k(u, v) # Casting the kernel to sparse if needed for efficient broadcasting if diff.issparse is True: k_grad = k_grad.tosparse() return CArray(2 * self.gamma * diff * k_grad)